Skip to main content
almarefa.net

Back to all posts

How to Group Data In A Pandas DataFrame?

Published on
3 min read
How to Group Data In A Pandas DataFrame? image

Best Pandas DataFrame Grouping Techniques to Buy in October 2025

1 Storytelling with Data: A Data Visualization Guide for Business Professionals

Storytelling with Data: A Data Visualization Guide for Business Professionals

  • MASTER DATA VISUALIZATION TECHNIQUES TO ENHANCE DECISION-MAKING.
  • LEARN HOW STORYTELLING TRANSFORMS COMPLEX DATA INTO INSIGHTS.
  • BOOST PRESENTATIONS WITH IMPACTFUL VISUALS THAT ENGAGE AUDIENCES.
BUY & SAVE
$23.05 $41.95
Save 45%
Storytelling with Data: A Data Visualization Guide for Business Professionals
2 Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

BUY & SAVE
$43.99 $79.99
Save 45%
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter
3 SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights

SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights

BUY & SAVE
$36.49 $65.99
Save 45%
SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights
4 Fundamentals of Data Analytics: Learn Essential Skills, Embrace the Future, and Catapult Your Career in the Data-Driven World—A Comprehensive Guide to Data Literacy for Beginners (Fundamentals Series)

Fundamentals of Data Analytics: Learn Essential Skills, Embrace the Future, and Catapult Your Career in the Data-Driven World—A Comprehensive Guide to Data Literacy for Beginners (Fundamentals Series)

BUY & SAVE
$17.99
Fundamentals of Data Analytics: Learn Essential Skills, Embrace the Future, and Catapult Your Career in the Data-Driven World—A Comprehensive Guide to Data Literacy for Beginners (Fundamentals Series)
5 Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)

Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)

BUY & SAVE
$29.99 $38.99
Save 23%
Data Analytics Essentials You Always Wanted To Know : A Practical Guide to Data Analysis Tools and Techniques, Big Data, and Real-World Application for Beginners (Self-Learning Management Series)
6 Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python

Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python

BUY & SAVE
$45.25 $79.99
Save 43%
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python
7 The Data Detective: Ten Easy Rules to Make Sense of Statistics

The Data Detective: Ten Easy Rules to Make Sense of Statistics

BUY & SAVE
$12.59 $20.00
Save 37%
The Data Detective: Ten Easy Rules to Make Sense of Statistics
8 Data Analysis in Microsoft Excel: Deliver Awesome Analytics in 3 Easy Steps Using VLOOKUPS, Pivot Tables, Charts And More

Data Analysis in Microsoft Excel: Deliver Awesome Analytics in 3 Easy Steps Using VLOOKUPS, Pivot Tables, Charts And More

BUY & SAVE
$19.99
Data Analysis in Microsoft Excel: Deliver Awesome Analytics in 3 Easy Steps Using VLOOKUPS, Pivot Tables, Charts And More
+
ONE MORE?

To group data in a pandas DataFrame, you can use the groupby() function. This function allows you to split the data into groups based on a specified column or columns. Once the data is grouped, you can then apply aggregate functions or perform other operations on each group. Grouping data can be useful for performing analysis on subsets of data or for summarizing large datasets.

How to group data in a pandas DataFrame and apply custom functions?

To group data in a pandas DataFrame and apply custom functions, you can use the groupby method along with the agg method.

Here's an example:

import pandas as pd

Create a sample DataFrame

data = {'Category': ['A', 'A', 'B', 'B', 'C'], 'Value': [10, 20, 30, 40, 50]}

df = pd.DataFrame(data)

Group the data by 'Category' and apply custom functions

result = df.groupby('Category').agg({'Value': ['mean', 'sum']})

Custom function to calculate the difference between the max and min values in each group

def custom_function(x): return x.max() - x.min()

result['Custom'] = df.groupby('Category')['Value'].apply(custom_function)

print(result)

In this example, we first create a sample DataFrame with categories and values. We then group the data by the 'Category' column using the groupby method and apply the agg method to calculate the mean and sum of the 'Value' column in each group.

We also define a custom function custom_function that calculates the difference between the maximum and minimum values in each group. We apply this custom function using the apply method within the agg function.

Finally, we print the resulting DataFrame with the mean, sum, and custom function values for each group.

How to group data in a pandas DataFrame and fill missing values within the groups?

You can group data in a pandas DataFrame using the groupby method and then fill missing values within each group using the fillna method. Here's an example:

import pandas as pd

Sample DataFrame

data = {'A': [1, 2, 3, None, 5, 6], 'B': [10, None, 30, 40, 50, None], 'group': ['X', 'X', 'Y', 'Y', 'Z', 'Z']} df = pd.DataFrame(data)

Group data by the 'group' column

grouped = df.groupby('group')

Fill missing values within each group with the mean of that group

filled_df = grouped.apply(lambda group: group.fillna(group.mean()))

print(filled_df)

This will group the data based on the 'group' column and fill the missing values within each group with the mean value of that group. You can also fill missing values with other statistical measures such as median, mode, etc. by using the respective aggregation functions within the apply method.

How to group data in a pandas DataFrame and sort the result?

To group data in a pandas DataFrame and sort the result, you can use the groupby() function along with the sort_values() function. Here's an example of how to do this:

import pandas as pd

Create a sample DataFrame

data = {'Category': ['A', 'B', 'A', 'C', 'B', 'C'], 'Value': [10, 20, 15, 25, 30, 35]} df = pd.DataFrame(data)

Group the data by 'Category' and calculate the sum of 'Value' for each group

grouped_data = df.groupby('Category')['Value'].sum().reset_index()

Sort the grouped data by 'Value' in descending order

sorted_data = grouped_data.sort_values(by='Value', ascending=False)

print(sorted_data)

In this example, we first group the data in the DataFrame df by the 'Category' column and calculate the sum of 'Value' for each group. We then reset the index to convert the grouped data back to a DataFrame.

Next, we use the sort_values() function to sort the grouped data by the sum of 'Value' in descending order. Finally, we print the sorted result.