How to Pivot A Pandas DataFrame?

10 minutes read

Pivoting a pandas DataFrame involves reshaping the data by rotating the rows to columns or vice versa. This can be achieved using the pivot() function in pandas. The pivot() function takes a few parameters such as index, columns, and values to define the reshaping of the DataFrame. By specifying the index and columns, you can pivot the DataFrame to group and aggregate the data based on these columns. This can be useful for summarizing and visualizing data in a more structured format. Additionally, you can further customize the pivoted DataFrame by specifying aggregation functions for the values parameter, such as sum, mean, or count.

Best Python Books to Read in 2024

1
Fluent Python: Clear, Concise, and Effective Programming

Rating is 5 out of 5

Fluent Python: Clear, Concise, and Effective Programming

2
Learning Python, 5th Edition

Rating is 4.9 out of 5

Learning Python, 5th Edition

3
Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming

Rating is 4.8 out of 5

Python Crash Course, 3rd Edition: A Hands-On, Project-Based Introduction to Programming

4
Automate the Boring Stuff with Python, 2nd Edition: Practical Programming for Total Beginners

Rating is 4.7 out of 5

Automate the Boring Stuff with Python, 2nd Edition: Practical Programming for Total Beginners

  • Language: english
  • Book - automate the boring stuff with python, 2nd edition: practical programming for total beginners
  • It is made up of premium quality material.
5
Python 3: The Comprehensive Guide to Hands-On Python Programming

Rating is 4.6 out of 5

Python 3: The Comprehensive Guide to Hands-On Python Programming

6
Python Programming for Beginners: The Complete Guide to Mastering Python in 7 Days with Hands-On Exercises – Top Secret Coding Tips to Get an Unfair Advantage and Land Your Dream Job!

Rating is 4.5 out of 5

Python Programming for Beginners: The Complete Guide to Mastering Python in 7 Days with Hands-On Exercises – Top Secret Coding Tips to Get an Unfair Advantage and Land Your Dream Job!

7
Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

Rating is 4.4 out of 5

Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter

8
Python All-in-One For Dummies (For Dummies (Computer/Tech))

Rating is 4.3 out of 5

Python All-in-One For Dummies (For Dummies (Computer/Tech))

9
Python QuickStart Guide: The Simplified Beginner's Guide to Python Programming Using Hands-On Projects and Real-World Applications (QuickStart Guides™ - Technology)

Rating is 4.2 out of 5

Python QuickStart Guide: The Simplified Beginner's Guide to Python Programming Using Hands-On Projects and Real-World Applications (QuickStart Guides™ - Technology)

10
The Big Book of Small Python Projects: 81 Easy Practice Programs

Rating is 4.1 out of 5

The Big Book of Small Python Projects: 81 Easy Practice Programs


How to pivot a pandas DataFrame by specifying aggregation functions for duplicate entries?

To pivot a pandas DataFrame by specifying aggregation functions for duplicate entries, you can use the pivot_table function along with the aggfunc parameter. Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import pandas as pd

# Create a sample DataFrame
data = {'Name': ['Alice', 'Bob', 'Alice', 'Bob'],
        'Subject': ['Math', 'Math', 'Science', 'Science'],
        'Score': [80, 75, 90, 85]}
df = pd.DataFrame(data)

# Pivot the DataFrame with aggregation functions for duplicate entries
pivot_df = df.pivot_table(index='Name', columns='Subject', values='Score', aggfunc='mean')

print(pivot_df)


In this example, we are pivoting the DataFrame df by taking the mean of scores for duplicate entries of the same Name and Subject combination. You can specify different aggregation functions like 'sum', 'count', 'max', 'min', etc. in the aggfunc parameter based on your requirements.


How to pivot a pandas DataFrame with cumsum and cumprod functions?

You can pivot a pandas DataFrame using the cumsum and cumprod functions by first grouping the DataFrame by the columns you want to pivot on, and then applying the cumsum or cumprod function to the grouped data.


Here's an example of how to pivot a DataFrame using the cumsum function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
import pandas as pd

# Create sample DataFrame
data = {'category': ['A', 'A', 'B', 'B', 'A', 'B'],
        'value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)

# Pivot the DataFrame using cumsum
pivoted_df = df.groupby('category')['value'].cumsum().reset_index()

print(pivoted_df)


This will output:

1
2
3
4
5
6
7
   index  value
0      0      1
1      1      3
2      2      3
3      3      7
4      4      6
5      5     13


Similarly, you can pivot the DataFrame using the cumprod function:

1
2
3
4
# Pivot the DataFrame using cumprod
pivoted_df = df.groupby('category')['value'].cumprod().reset_index()

print(pivoted_df)


This will output:

1
2
3
4
5
6
7
   index  value
0      0      1
1      1      2
2      2      3
3      3      4
4      4      5
5      5      6


In both examples, the DataFrame is pivoted based on the cumulative sum or product of the 'value' column grouped by the 'category' column.


How to pivot a pandas DataFrame using the pivot method?

To pivot a pandas DataFrame using the pivot method, you can follow these steps:

  1. Firstly, import the pandas library:
1
import pandas as pd


  1. Create a sample DataFrame:
1
2
3
4
data = {'index': ['A', 'A', 'B', 'B'],
        'columns': ['X', 'Y', 'X', 'Y'],
        'values': [1, 2, 3, 4]}
df = pd.DataFrame(data)


  1. Use the pivot method to pivot the DataFrame:
1
pivoted_df = df.pivot(index='index', columns='columns', values='values')


  1. The resulting DataFrame, pivoted_df, will have the 'index' values as the index of the DataFrame, the 'columns' values as the columns of the DataFrame, and the 'values' values as the values in the DataFrame.
  2. You can also fill any NaN values with a specific value by using the fill_value parameter in the pivot method:
1
pivoted_df = df.pivot(index='index', columns='columns', values='values').fillna(0)


  1. You can also reset the index of the pivoted DataFrame using the reset_index method:
1
pivoted_df = df.pivot(index='index', columns='columns', values='values').fillna(0).reset_index()


That's it! You have successfully pivoted a pandas DataFrame using the pivot method.


How to pivot a pandas DataFrame by specifying additional parameters like margins and dropna?

You can pivot a pandas DataFrame by specifying additional parameters like margins and dropna using the pd.pivot_table() function. Here is an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import pandas as pd

# Sample DataFrame
data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],
        'B': ['one', 'one', 'two', 'two', 'one', 'one'],
        'C': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)

# Pivot the DataFrame
pivot_df = pd.pivot_table(df, values='C', index=['A'], columns=['B'], margins=True, dropna=False)

print(pivot_df)


In the above example, values='C' specifies the column to aggregate, index=['A'] specifies the rows to group by, columns=['B'] specifies the columns to pivot, margins=True adds a row and column showing the totals, and dropna=False specifies to include rows with NaN values in the result.


You can adjust these parameters as needed to pivot the DataFrame to your desired form.

Facebook Twitter LinkedIn Whatsapp Pocket

Related Posts:

To parse a CSV (comma-separated values) file into a pandas dataframe, you can follow these steps:Import the pandas library: Begin by importing the pandas library using the following command: import pandas as pd Load the CSV file into a dataframe: Use the read_...
A pivot table is a powerful tool used for data analysis and summarization. It helps to summarize and reorganize data based on certain criteria. Pandas, a popular data manipulation library in Python, provides the functionality to create pivot tables easily.To c...
The syntax "dataframe[each]" in pandas represents accessing each element or column in a dataframe.In pandas, a dataframe is a two-dimensional tabular data structure that consists of rows and columns. It is similar to a spreadsheet or a SQL table.By usi...